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A POWER SERIES SOLUTION FOR THE
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A power series solution is presented for the non-linear free vibration of beams with
restrained ends. The analysis is based on transforming the time variable into an oscillating
time which allows the motion of the beam, assumed to be periodic, to be expressed as a
double power series that is convergent for all time. A recurrence relation is used to
determine the series coefficients, with the initial movement satisfying the boundary
conditions as its basis. Results are obtained for simply supported and clamped beams and
compared with available solutions.
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1. INTRODUCTION

The study of the free vibration of geometrically non-linear beams involves obtaining
solutions to governing non-linear partial differential equations for which exact analysis is
not available. Two approximate methods have traditionally been used in the analysis of
such problems. In the first method [1, 2], the beam is assumed to vibrate in its linear mode
shape, which serves to reduce the equation of motion of a modal Duffing equation, for
which an exact solution exists in the form of an elliptic integral. In the second method
[3, 4] one assumes a harmonic time dependence which reduces the problem to that of
solving a differential equation in the space variable. More recently, a method based on
the concept of invariant manifolds [5] was used to generate normal modes of vibration for
weakly non-linear systems.

In the past, power series expansions of dynamical motions were not possible because
the infinite extent of the time variable gives rise to secular terms. However, by transforming
the time variable into an oscillating time, the governing differential equation becomes,
under certain conditions relating to the invertibility of the transformation, well-con-
ditioned for a solution by the power series method. In this paper, the problem of free
vibration of non-linear beams with restrained ends was chosen for power series analysis
because such conditions are satisfied by the beam motion. To that extent, the present
approach is not to be regarded as generally applicable.

2. EQUATION OF MOTION

For moderately large amplitude vibrations, the equation of motion of beams with their
ends restained in the horizontal x-direction is given by

W� + aW2− b0g
1

0

W'2 dz1W0=0 (1)
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where the overdot and prime denote differentiation with respect to the time t and the space
variable z= x/L, respectively. The beam motion is described by the transverse
displacement W and the constants a=EI/mL4 and b=EA/2mL4 in which E, I, m, A and
L are the modulus of elasticity, the moment of inertia of the cross-section, the mass per
unit length, the cross-sectional area and the length of the beam, respectively. It is assumed
that the beam is linearly elastic and that horizontal inertia forces are negligible in
comparison with transverse inertia forces. In addition, shear deformation and rotary
inertia are ignored.

The theory of power series expansion [6] places as a condition for convergence
the requirement that the independent variables involved in the expansion be of finite
extent. In vibration analysis, the time variable t has an infinite domain and, consequently,
power series solutions may be obtained only within a small interval of time. To
facilitate the use of the power series method in capturing the periodic motion of dynamical
systems, it is proposed to transform the time variable t into an oscillating time t as
follows:

t= h(t)= sin vt. (2)

This transforms the infinite time domain 0 E tEa into a finite time scale −1 E tE 1
within which t oscillates harmonically at a frequency v to be determined. In addition,
equation (2) satisfies the requirement that t=0 at the initial instant t=0. This
requirement is particularly important when the initial conditions are considered. It will be
shown that, under certain conditions, the time transformation (2) is invertible and the
beam displacement can therefore be expressed in two different but equivalent functional
forms w(z, t)=W(z, h−1(t)). When equation (2) is used to transform equation (1) into
the (z, t) co-ordinates, only the first term is affected and the equation of motion
becomes

v2(1− t2)wtt −v2twt + aw2− b0g
1

0

w'2 dz1w0=0, (3)

in which the subscript t denotes differentiation with respect to t. The transformation is
seen to change the character of the equation into a non-autonomous one wherein the time
variable appears explicitly. Also, the frequency v of the oscillating time is an auxillary
parameter which influences the solution. Equation (3) is a non-linear partial differential
equation which is to be solved subject to four boundary conditions and two initial
conditions. The boundary conditions, two at each end of the beam, remain unchanged by
the transformation. For the initial conditions, only the velocity in the new co-ordinates
is affected by v,

w(z, 0)=W0(z, 0), wt(z, 0)=W� 0(z, 0)/v, (4)

where W0(z, 0) and W� 0(z, 0) are the initial displacement and velocity, respectively, in the
original co-ordinates.

3. SOLUTION

According to differential equation theory [6], equation (3) has an ordinary point
at t=0, two regular singular points at t=21 and an ordinary point at z=0. Thus,
in view of the finite ranges of the independent variables involved, it is possible to
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expand the beam motion as a double power series about the ordinary points z=0 and
t=0 as

w(z, t)= s
a

n=1

s
a

m=1

anmz
m−1tn−1, (5)

in which anm are constant coefficients to be determined. By substituting equation (5) into
equation (3) and making appropriate changes of indices so that all terms have the same
power, the governing equation can be reduced to

s
a

n=1

s
a

m=1

cnmz
m−1tn−1, (6)

where cnm =v2[n(n+1)an+2,m −(n−1)(n−2)anm]−v2(n−1)anm + am(m+1)(m+2)
(m+3)an,m+4 − bbnm. The coefficients bnm of the non-linear term result from the
multiplication of two power series: one in terms of t only representing the integral f1

0 w'2 dz

and the other a double series for the derivative w0. Consequently, such coefficients consist
of terms involving products of the constants anm . In fact, the value of bnm can be computed
once anm , an−1,m , an−2,m , . . . , a1m are known. Now equation (6) is satisfied for all possible
values of z and t only if all the coefficients cnm vanish. This condition gives the recurrence
relation

an+2,m =
v2(n−1)2anm − am(m+1)(m+2)(m+3)an,m+4 + bbnm

v2n(n+1)
,

n, m=1, 2, 3, · · · , (7)

between the series coefficients. The basis for this relation is the initial displacement and
velocity equations (4) which determine the elements of the first and second rows of the
coefficient matrix: a1m and a2m, respectively. The elements of the remaining rows are then
determined recursively from equation (7) and their values are, in general, dependent on
v. The introduction of the oscillating time frequency as an additional unknown parameter
in the equation calls for an auxiliary condition for its determination. Such a condition is
provided by Rayleigh’s energy principle which stipulates that, for a conservative system,
the maximum kinetic and strain energies are equal. For beams with restrained ends, the
kinetic and strain energies are, respectively, given by

T=
mL
2 g

1

0

ẇ2 dz=v2(1− t2)
mL
2 g

1

0

w2
t dz

and

U=
amL

2 g
1

0

(w0)2 dz+
bmL

4 0g
1

0

w'2 dz1
2

. (8, 9)

The series coefficients anm depend only on v and consequently these energy expressions are
functions of v and t. Suppose that the motion starts from rest at t= t=0 with a
prescribed displacement that satisfies the boundary conditions. At this instant, the strain
energy is at a maximum and can be computed from equation (9). Since the beam vibration
at moderately large amplitude is periodic with frequency V say, and the beam motion is
described in terms of t, the motion must repeat itself every time t is zero. This corresponds
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to one half-cycle of v and, consequently, the frequency of the oscillating time equals one
half the vibration frequency:

v=V/2. (10)

The introduction of zero initial velocity into the recurrence equation (7) results in the
vanishing of all the even rows in the coefficient matrix. Consequently, the beam motion,
as represented by equation (5), is an even function of t, so that, as time t progresses from
zero, each half-cycle of the oscillating time captures repeatedly the full cycle of beam
vibration. Furthermore, the symmetry of the oscillating time requires that both halves of
the vibration cycle be identical. It follows that under the conditions of periodicity, zero
initial velocity and symmetry of the vibration cycle, the time transformation given in
equation (2), which converts time into a non-monotonic function, becomes invertible.

The equilibrium position corresponding to maximum velocity is reached at angular
positions Vt= p/2, 3p/2, 5p/2, . . . for which t=21/z2. At these instants, the kinetic
energy is at a maximum and may be determined from equation (8). The oscillating time
frequency is obtained from a frequency search for a value of v that satisfies Rayleigh’s
energy principle. The vibration frequency V can, as a result, be determined to the desired
degree of accuracy. Now, since the natural motion of the beam at moderately large
amplitude is at present unknown, the initial displacement may arbitrarily be chosen as any
one of the free vibration modes of the linearized beam with the initial velocity taken to
be zero: i.e.,

w(z, 0)= lgn(z), wt(z, 0)=0, (11)

where gn(z) is the nth normal linear mode of vibration, gn(z�)=1 for a freely chosen z= z�
and l denotes the amplitude of vibration at the point z= z�. Also, it is common practice
to express the order of non-linearity in terms of a vibration amplitude ratio l/k, where
k=zI/A=za/2b is the radius of gyration of the beam cross-section. The linearized
beam corresponds to b=0 with the vibration amplitude ratio assuming small values
(l/k�1).

4. NUMERICAL EXAMPLES

Power series solutions of equation (3) were computed for simply supported and clamped
beams. In each case, a convergent solution was obtained. The linear modes of vibration
were used as initial displacements which could be expanded as power series, so that values
for all the elements of the first row in the coefficient matrix may be assigned. All the
elements of the second row representing the initial velocity vanished since the initial
velocity was taken zero.

For the simply supported beam

gn(z)= sin npz=(np)z−
(np)3

3!
z3 +

(np)5

5!
z5 − . . . , (12)

so that a11 =0, a12 = npl, a13 =0, a14 =−{(np)3/3!}l, etc. The boundary conditions
w(0, t)=0, w0(0, t)=0 at z=0 require that the first and third columns of the coefficient
matrix be zero if the ensuing motion is to satisfy these conditions. Two additional
requirements are placed on the beam motion from the boundary conditions w(1, t)=0,
w0(1, t)=0 at z=1. These are

s
a

m=1

anm =0, s
a

m=1

m(m+1)an,m+2 =0, n=1, 2, 3, . . . . (13)
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T 1

Vibration frequency ratio V/VL for a simply supported beam (a=2, b=1).

First Mode Present
ZXXXXXXCXXXXXXV ZXXXXXXXXXCXXXXXXXXXV

l/k Lewandowski [7] Krieger [1] First mode Second mode Third mode

1 1·0897 1·0892 1·0892 1·0895 1·0894
2 1·3299 1·3178 1·3178 1·3179 1·3179
3 1·6394 1·6257 1·6257 1·6228 1·6260

These requirements are uniquely satisfied by the natural ‘‘non-linear’’ modes of vibration
of the beam and may therefore be used as a criterion for qualifying the initial displacement
as a natural mode. In Table 1 is given the vibration frequency ratio V/VL of the first three
modes for different values of l/k, and the results for the first mode are compared with
available results. The frequency VL relates to the linear beam. In each case, the coefficient
matrix size was 40×40. The results for the first mode are identical to those of Krieger
[1] who used a linear mode assumption, with those of Lewandowski [7] using the Ritz
method providing an overestimate. The frequency ratios of the second and third modes
are seen to be practically the same as those of the first mode, which suggests that the
frequency ratio of the simply supported beam is independent of the mode number. This
result is in agreement with the findings of Krieger [1]. In Table 2 are given the first 11×6
non-zero coefficients of the series matrix for the first mode with l/k=2.

For beams clamped at both ends,

gn(z)= [sin gnz−sinh gnz− hn(cos gnz−cosh gnz)]/cn , (14)

where

hn =(sin gn −sinh gn)/(cos gn −cosh gn),

cn =(sin gnz�n −sinh gnz�n)− hn(cos gnz�n −cosh gnz�n),

and gn are the positive roots of the transcendental equation cos g cosh g=1.
Similarly, this mode shape may be expanded into a single power series, the coefficients

of which are assigned to the elements of the first row of the series matrix. In Table 3 the
frequency ratios for a clamped beam are compared with those of the Ritz method [7] for

T 2

The non-zero series coefficients for first mode of a simply supported beam (a=2, b=1)

n m=2 m=4 m=6 m=8 m=10 m=12

1 6·2857 −10·3479 5·1106 −1·2019 0·1649 −0·0148
3 −14·5046 23·8784 −11·7930 2·7735 −0·3805 0·0342
5 6·3230 −10·4093 5·1409 −1·2090 0·1659 −0·0149
7 −6·2983 10·3687 −5·1209 1·2043 −0·1652 0·0148
9 3·7806 −6·2238 3·0738 −0·7229 0·0992 −0·0089

11 −3·0152 4·9639 −2·4515 0·5766 −0·0791 0·0071
13 2·0356 −3·3511 1·6550 −0·3892 0·0534 −0·0048
15 −1·5110 2·4874 −1·2285 0·2899 −0·0396 0·0036
17 1·0624 −1·7489 0·8638 −0·2031 0·0279 −0·0025
19 −0·7697 1·2672 −0·6258 0·1472 −0·0202 0·0018
21 0·5489 −0·9036 0·4463 −0·1050 0·0144 −0·0013
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T 3

Vibration frequency ratio V/VL for a clamped beam (a=2, b=1).

First mode Second mode Third mode
ZXXXXXCXXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

l/k Lewandowski Present Lewandowski Present Lewandowski Present

1 1·0222 1·0167 1·0486 1·0143 1·0605 1·0034
2 1·0858 1·0739 1·1794 1·1133 1·2169 1·0840
3 1·1833 1·1613 1·3635 1·2661 1·4312 1·2325

different values of the amplitude ratio. Here, significant differences in frequency ratio are
seen to exist, which may be attributed to two factors. First, the Ritz method, like any
approximate technique, provides an overestimate of the frequency. Second, an attempt was
made to minimize these differences by increasing the number of polynomial terms. This,
however, did not produce the desired effect, which suggests that the frequencies predicted
by the present method are significantly influenced by the prescribed initial displacement.
The first 11×6 non-zero series coefficients for the first mode are shown in Table 4 for
l/k=2. The boundary conditions at z=0 for a clamped beam require that the first and
second columns of the coefficient matrix be zero, a condition which is clearly violated, as
depicted in Table 4. The corresponding requirements for the simply supported beam;
namely, the vanishing of the first and third columns, were always satisfied. At the boundary
z=1, the conditions w(1, t)=0, w'(1, t)=0 for the clamped beam require that

s
a

m=1

anm =0, s
a

m=1

man,m+1 =0, n=1, 2, 3, . . . . (15)

In Table 5 are shown the summations involved in the boundary conditions at z=1 for
the first mode of the two beams (l/k=2). The values for n=1 representing those of the
linear mode shapes are not zero because of the truncations involved. Values for ne 3
clearly shown that the boundary conditions at z=1 are satisfied by the simply supported
beam and violated by the clamped beam. Consequently, it may be concluded that the
natural modes of vibration at large amplitude for simply supported beams are the same
as the linear ones. This result is supported by the agreement of the computed frequencies

T 4

The non-zero series coefficients for the first mode of clamped beam (l/k=2)·

n m=1 m=2 m=3 m=4 m=5 m=6

1 0·0000 0·0000 28·2090 −43·7244 0·0000 0·0000
3 3·9142 −1·6547 0·0000 0·0000 0·0818 −0·0253
5 1·9035 −8·8516 −48·9245 75·8338 39·7967 −37·0114
7 −6·7887 2·8698 0·5020 −0·1796 −0·1418 0·0440
9 −2·4386 11·3395 0·05194 −0·8051 −50·9823 47·4141

11 0·0721 −0·0305 0·6431 0·2300 −0·0395 0·0122
13 2·0834 −9·6879 −7·8382 12·1493 43·5570 −40·5084
15 −0·8607 0·3639 0·4991 −0·1785 − 0·0426 0·0132
17 −1·4953 6·9531 8·5106 −13·1916 −31·2610 29·0730
19 1·3777 −0·5824 −0·3578 0·1280 0·0035 −0·0011
21 1·0367 −4·8206 −8·8853 13·7724 21·6575 −20·1417
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T 5

The boundary condition satisfaction criterion at z=1 for the first mode (l/k=2)

Simply supported beam Clamped beam
ZXXXXXXXXCXXXXXXXXV ZXXXXXXCXXXXXXV

n s
m=1

anm s
m=1

m(m+1)an,m+2 s
m=1

anm s
m=1

man,m+1

1 −0·0025 0·0249 0·0000 0·0336
3 0·0058 −0·0576 1·9100 8·8060
5 −0·0025 0·0251 −2·4711 −11·6834
7 0·0025 −0·0250 2·1723 10·3044
9 −0·0015 0·0150 −1·3747 −5·6442

11 0·0012 −0·0119 1·0475 5·1886
13 −0·0008 0·0081 −0·8739 −3·6587
15 0·0006 −0·0060 0·6189 3·1822

with those obtained by using the linear mode assumption [1]. For clamped beams, however,
the linear modes are different from the non-linear modes.

It is also appropriate to evaluate the stretching force F which is responsible for the
non-linear vibration of beams with restrained ends. In Table 6 are given for the first mode,
the amplitude of the stretching force ratio

FL2

EI
=

b

a g
1

0

(w')2 dz (16)

of the two beams for different values of vibration amplitude ratio, and the results are
compared with those presented in reference [1, 3]. Good agreement is shown for both
beams. It is evident from equation (16) that the stretching force is constant over the beam
length but is time-dependent. It was found that, for the simply supported beam, the
stretching force vibrates with a frequency twice that of the beam vibration frequency. This
is in agreement with the results obtained by Krieger [1].

Dowell [8] has shown that, if the non-linear mode of vibration is assumed to be a
combination of the linear mode shapes

w(x, t)= s
n

i=1

qi(t)wi(x)

the presence of the non-linear stretching force produces coupling among the mode shapes
such that the frequency ratios for the second and higher modes are always greater than
those for the first mode. Here, it is not possible to verify this finding for the clamped beam
in the results because of the influence of the prescribed displacement, or in the formulation

T 6

The stretching force ratio FL2/EI for beams (a=2, b=1)

Simply supported beam Clamped beam
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

l/k Krieger [1] Present Sarma et al. [3] Present

1 2·4674 2·4704 2·4381 2·4403
2 9·8696 9·8816 9·7452 9·7612
3 22·2066 22·2334 21·9087 21·9632
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because the frequency is intertwined in the coefficients in a complex way. However, this
assumption breaks down for the simply supported beam, for which the linear and
non-linear modes are identical. It may, therefore, be argued that the non-linear modes of
vibration must form an independent set of functions. Under this condition of mode
independence no coupling takes place due to the stretching force, which results in
frequency ratios being independent of the mode number. One may thus predict that the
aforementioned assumption leads to overestimates of the higher mode frequencies.

5. CONCLUSIONS

A power series approach has been presented for the analysis of non-linear vibration of
beams with restrained ends. Convergent solutions were obtained upon transforming the
time variable into an harmonically oscillating time. The frequency of the oscillating time
is obtainable from Rayleigh’s energy principle. The basic approach may be applied to
systems with quadratic or other non-linearities, provided that the conditions for
invertibility of time transformation are satisfied. It may not, for instance, be applied to
asymmetric waveforms or to transient motion caused by damping, since these violate the
periodicity condition. Results for simply supported and clamped beams showed agreement
of the computed vibration frequencies with those available in the literature. A criterion
for non-linear modes was introduced which showed that simply supported beams vibrate
at large amplitudes with their linear modes. However, this result was not valid for clamped
beams.
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